Wip1 phosphatase positively modulates dendritic spine morphology and memory processes through the p38MAPK signaling pathway.
نویسندگان
چکیده
Dendritic spine morphology is modulated by protein kinase p38, a mitogen-activated protein (MAPK), in the hippocampus. Protein p38MAPK is a substrate of wip1, a protein phosphatase. The role of wip1 in the central nervous system (CNS) has never been explored. Here, we report a novel function of wip1 in dendritic spine morphology and memory processes. Wip1 deficiency decreases dendritic spine size and density in pyramidal neurons of the hippocampal CA1 region. Simultaneously, impairments in object recognition tasks and contextual memory occur in wip1 deficient mice, but are reversed in wip1/p38 double mutant mice. Thus, our findings demonstrate that wip1 modulates dendritic morphology and memory processes through the p38MAPK signaling pathway. In addition to the well-characterized role of the wip1/p38MAPK in cell death and differentiation, we revealed the novel contribution of wip1 to cognition and dendritic spine morphology, which may suggest new approaches to treating neurodegenerative disorders.
منابع مشابه
Clinical significance of Wip1 overexpression and its association with the p38MAPK/p53/p16 pathway in NSCLC
Wip1 is deregulated in numerous human malignancies. However, its roles in non‑small cell lung cancer (NSCLC) remain unclear. In the current study, the expression of Wip1 was investigated in NSCLC and its clinical significance was detected. Immunohistochemical staining was used to measure the expression of (wild‑type p53 induced phosphatase 1) Wip1, p38 mitogen‑activated protein kinase (MAPK), p...
متن کاملChanges in expression of klotho affect physiological processes, diseases, and cancer
Klotho (KL) encodes a single-pass transmembrane protein and is predominantly expressed in the kidney, parathyroid glands, and choroid plexus. Genetic studies on the KL gene have revealed that DNA hypermethylation is one of the major risk factors for aging, diseases, and cancer. Besides, KL exerts anti-inflammatory and anti-tumor effects by regulating signaling pathways and the expression of tar...
متن کاملWip1 phosphatase: between p53 and MAPK kinases pathways
Cells undergoing oncogenic transformation frequently inactivate tumor suppressor pathways that could prevent their uncontrolled growth. Among those pathways p53 and p38MAPK pathways play a critical role in regulation of cell cycle, senescence and cell death in response to activation of oncogenes, stress and DNA damage. Consequently, these two pathways are important in determining the sensitivit...
متن کاملDynamic Microtubules Promote Synaptic NMDA Receptor-Dependent Spine Enlargement
Most excitatory synaptic terminals in the brain impinge on dendritic spines. We and others have recently shown that dynamic microtubules (MTs) enter spines from the dendritic shaft. However, a direct role for MTs in long-lasting spine plasticity has yet to be demonstrated and it remains unclear whether MT-spine invasions are directly influenced by synaptic activity. Lasting changes in spine mor...
متن کاملPhosphatase Wip1 in Immunity: An Overview and Update
Wild-type p53-induced phosphatase 1 (Wip1) is a newly identified serine/threonine phosphatase, which belongs to the PP2C family. Due to its involvement in stress-induced networks and overexpression in human tumors, primary studies have mainly focused on the role of Wip1 in tumorigenesis. It now has also been implicated in regulating several other physiological processes such as organism aging a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell adhesion & migration
دوره 6 4 شماره
صفحات -
تاریخ انتشار 2012